Hamiltonian formalism exercises
Exercise 1 Choose a set of generalized coordinates that totally specify the mechanical state of the following systems:
|
Exercise 2 Derive the transformation equations for the double pendulum.
It is $ {x_1=l_1\cos\theta_1}$, $ {x_2=l_1\cos\theta_1+l_2\cos\theta_2}$, $ {y_1=l_1\sin\theta_1}$ and $ {y_2=l_1\sin\theta_1+l_2\sin\theta_2}$ |
Exercise 3 Show that $ {\dfrac{\partial \dot{\vec{r}}_\nu}{\partial \dot{q}_\alpha}=\dfrac{\partial\vec{r}_\nu}{\partial q_\alpha}}$.
$ {\begin{aligned} \vec{r}_\nu&=\vec{r}_\nu(q_1,q_2,\cdots,q_n,t)\Rightarrow \\ \dot{\vec{r}_\nu}&=\dfrac{\partial\vec{r}_\nu }{\partial q_1}\dot{q}_1+\cdots+\dfrac{\partial\vec{r}_\nu }{\partial q_n}\dot{q}_n+\dfrac{\partial\vec{r}_\nu}{\partial t} \Rightarrow \\ \dfrac{\partial \dot{\vec{r}}_\nu}{\partial\dot{q}_\alpha}&=\dfrac{\partial \vec{r}_\nu}{\partial q_\alpha} \end{aligned}}$ |
Exercise 4 Consider a system of particles that experiences an increment $ {dq_j}$ on its generalized coordinates. Derive the following expression $ {dW=\displaystyle \sum_\alpha \Phi_\alpha dq_\alpha}$ for the total work done by the force and indicate the physical meaning of $ {\Phi_\alpha}$.
First note that
$ \displaystyle d\vec{r}_\nu =\sum_{\alpha=1}^n \dfrac{\partial \vec{r}_\nu}{\partial q_\alpha}dq_\alpha$
For $ {dW}$ it is
$ {\begin{aligned} dW &=\sum_{\nu=1}^N\vec{F}_\nu\cdot d\vec{r}_\nu\\ &=\sum_{\nu=1}^N\left( \sum_{\alpha=1}^n \vec{F}_\nu\cdot\dfrac{\partial \vec{r}_\nu}{\partial q_\alpha} \right) dq_\alpha\\ &= \sum_{\alpha=1}^n \Phi_\alpha dq_\alpha \end{aligned}}$ with $ {\displaystyle \Phi_\alpha=\sum_{\nu=1}^N \vec{F}_\nu\cdot\dfrac{\partial \vec{r}_\nu}{\partial q_\alpha}}$ being the generalized force. |
Exercise 5 Show that $ {\Phi_\alpha=\dfrac{\partial W}{\partial q_\alpha}}$.
We have $ {\displaystyle dW=\sum_\alpha\frac{\partial W}{\partial q_\alpha}dq_\alpha}$ and $ {\displaystyle dW=\sum_\alpha\Phi_\alpha dq_\alpha}$. Hence $ {\displaystyle \sum_\alpha\left( \Phi_\alpha- \frac{\partial W}{\partial q_\alpha}\right)dq_\alpha=0}$. Since $ {dq_\alpha}$ are linearly independent it is $ {\Phi_\alpha=\dfrac{\partial W}{\partial q_\alpha}}$. |
Exercise 6 Derive the lagrangian for a simple pendulum and obtain an equation to describe its motion.
The generalized coordinate for the simple pendulum is $ {\theta}$ and the transformation equations are $ {x=l\sin\theta}$ and $ {y=-l\cos\theta}$. For the kinetic energy it is $ {K=1/2mv^2=1/2m(l\dot{\theta})^2=1/2ml^2\dot{\theta}^2}$. for the potential $ {V=mgl(1-\cos\theta)}$. Hence the Lagrangian is $ {L=K-V=1/2ml^2\dot{\theta}^2-mgl(1-\cos\theta)}$. $ {\dfrac{\partial L}{\partial \theta}=-mgl\sin\theta}$ and $ {\dfrac{\partial L}{\partial \dot{\theta}}=ml^2\dot{\theta}}$. Hence the Euler Lagrange equation is $ {\begin{aligned} \frac{d}{dt}\dfrac{\partial L}{\partial \dot{\theta}}-\dfrac{\partial L}{\partial \theta}&=0\Rightarrow\\ ml^2\dot{\theta}+mgl\sin\theta&=0\Rightarrow\\ \ddot{\theta}+g/l\sin\theta=0 \end{aligned}}$ |
Exercise 7 Two particles of mass $ {m}$ are connected with each other and to two points $ {A}$ and $ {B}$ by springs with constant factor $ {k}$. The particles are free to slide along the direction of $ {A}$ and $ {B}$. Use the Euler-Lagrange equations to derive the equations of motion of the particles.
The kinetic energy is $ {K=1/2m\dot{x}^2_1+1/2m\dot{x}^2_2}$. The potential energy is $ {V=1/2kx^2_1+1/2k(x_2-x_1)^2+1/2kx^2_2}$. Hence the Lagrangian is $ {L=1/2m\dot{x}^2_1+1/2m\dot{x}^2_2-1/2kx^2_1-1/2k(x_2-x_1)^2-1/2kx^2_2}$. The partial derivatives of the Lagrangian are:
|
Exercise 8 A particle of mass $ {m}$ moves subject to a conservative force field. Use cylindrical coordinates to derive:
|
Exercise 9 A double pendulum oscillates on a vertical plane.
|
Exercise 10 A particle moves along the plane $ {xy}$ subject to a central force that is a function of the distance between the particle and the origin.
|
Exercise 11 A particle describes a one dimensional motion subject to a force
$ \displaystyle F(x,t)= \frac{k}{x^2}e^{-t/\tau} $
where$ {k}$ and $ {\tau}$ are positive constants. Find the lagrangian and the hamiltonian.
Compare the hamiltonian with the total energy and discuss energy conservation for this system. Since $ {F(x,t)= \frac{k}{x^2}e^{-t/\tau}}$ it follows $ {V=\dfrac{k}{x}e^{-t/\tau}}$. For the kinetic energy it is $ {K=1/2m\dot{x}^2}$. Hence the lagrangian is
$ \displaystyle L=1/2m\dot{x}^2-\dfrac{k}{x}e^{-t/\tau}$
.
Now $ {p_x=m\dot{x}\Rightarrow\dot{x}=\dfrac{p_x}{m}}$.
For the Hamiltonian it is $ {H=p_x\dot{x}-L=\dfrac{p_x^2}{2m}+\dfrac{k}{x}e^{-t/\tau}}$. Since $ {\dfrac{\partial L}{\partial t}=0}$ the system isn't conservative. Since $ {\dfrac{\partial U}{\partial \dot{x}}=0}$ it is $ {H=E}$. |
Exercise 12 Consider two functions of the generalized coordinates and the generalized momenta, $ {g(q_k,p_k)}$ and $ {h(q_k,p_k)}$. The Poisson brackets are defined as:
$ \displaystyle [g,h]=\sum_k \left(\frac{\partial g}{\partial q_k}\frac{\partial h}{\partial p_k}-\frac{\partial g}{\partial p_k}\frac{\partial h}{\partial q_k}\right) $
Show the following properties of the Poisson brackets:
|
0 comments:
Post a Comment